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Amusement Anticipation



Amusement Anticipation
I Naive solution sufficed – for each index i of the array, check

whether it is a start of an arithmetic sequence ai , ai+1 . . . , an
by iterating through all of its elements

I The smallest such index is the result
I This approach runs in O(n2) time

6 2 3 5 7

I However, last two numbers of the array are always contained
in the optimal arithmetic sequence ending at index n ⇒ the
difference d of the optimal sequence is an − an−1 (for n > 1)

I It then suffices to check, starting from the end of the array,
how many numbers correspond to the difference

I The first index i , s.t. ai + d 6= ai+1, is the result (or if no such
index exists, the whole array is an arithmetic sequence)

I This approach yields an O(n) solution



Pond Cascade



Pond Cascade

I One way of solving the problem is simply to simulate it

I Another way is to binary search over time



Pond Cascade – Simulation

I Use priority queue to track order of events when some pond
fills up to the top

I We will keep an array which will contain, for each pond,
subsequent pond where the water will overflow

I While processing an event set remaining volume of current
pond to zero and decrease remaining empty volume of
subsequent pond and create an event based on new flow to
the subsequent pond

I All that is left is to memorize the time for the last and for all
ponds

I Total running time: O(n · log n)



Pond Cascade – Binary search

I Use binary search to guess time when the last and all of the
ponds fill up separately

I Based on the guessed time we can loop through the ponds and
find out how many litres will be poured in and consequently
how much liquid is poured to the subsequent in order

I Based on the result of binary search (either we got too much
liquid in pond or not enough to fill up) we adjust our guess

I It can be easily proven that our guess has to be between 1
and 109 seconds

I Then we can simply iterate and keep trying till we get our
desired precision or for fixed number of iterations (50 is more
than sufficient)



Chessboard Dancing



Chess - Knight



Chess - Rook



Chess - King



Chess - Bishop



Equinox Roller Coaster



Equiroaster



Equiroaster



Equiroaster

I Create a list for each X/Y coordinate.

I For each point, choose the shorter list

I Iterate over all points from the list

I For each pair calculate the two remaining points

I Check whther the points exists (map)

I O(N
√
Nlog(N)) (logarithm can be futher optimized)



Equiroaster — Alternative Solution



Equiroaster — Alternative Solution



Equiroaster — Alternative Solution



Forest Picture



Forest Picture

I Naive solution sufficed – prepare 2D array full of dots and for
each tree in the input loop through each character it consists
of and if the character is in visible part of picture then place it
in the array

I There were no overlaps allowed not even of their bounding
boxes

I This approach runs in O(m2 + n) time

*********

*_o_^_o_*

*../|\..*

*.._|_..*

*********



Shooting Gallery



Galery

I Dynamic Programming

I Keep begin/end: Take maximum of
[begin+1,end]/[begin,end-1] (if not equal)

I O(N2)



Ice cream samples



Ice cream samples
I Naive solution – fix a starting stand and consecutively include

following stands until all brands of ice cream are collected
I This solution runs in at least O(n2) time ⇒ TLE

a

1, 3, 1, 3

b

2

c

3, 3
d

1

I The faster solution is to use two-pointer technique to
dynamically enlarge and shorten currently observed sequence
of stands

I In the beginning the sequence is empty
I We must enlarge the sequence if there are still some brands

yet to be collected
I Conversely, if all brands have been collected, we can shorten

the sequence



Ice cream samples

We still have two issues to solve:

I First, we need to effectively calculate the amount of different
brands that have been collected

I Solution is simple – keep a frequency array of size k , i.e. for
each brand dynamically store the number of collected samples

I Then, while extending the sequence, we increase the count of
different brands on the first occurence of a brand’s sample

I While shortening the sequence, we decrease the count of
different brands on the last occurence of a brand’s sample



I Secondly, as the stands are positioned circularly, the solution
might span over the last stand to the first ones

I It suffices to go through the input twice (imagine as if the
input was concatenated with itself once)

a

2

b

3

c 1, 1d2, 2

e
1

I ⇒ By combining mentioned techniques, we obtain an
approach that runs in time linear with the amount of samples
on the input



Dark Ride with Monsters



Dark Ride with Monsters

I Finding permutation cycles

I O(N)

3 4 5 2 1



Go Northwest!



Go Northwest!

I We need to count the number of ways to select two (not
necessarily distinct!) points such that when we connect them
by line the angle between the line and horizontal axis is 45
degrees

I How?



Go Northwest!

I The coordinates of points can help us to index diagonals to
find out how many points lie on the same diagonal

I The northwest diagonals can be indexed by x + y

I The northeast diagonals can be indexed by x − y



Go Northwest!

I For each diagonal where lie x points we can find out the
number of ways to select two points to form a line as
x · (x − 1)

I That leaves us to sum result over all diagonals and divide it by
number of all options n2

I Total running time: O(n) or O(n · log n) depending on the
indexing of diagonals



Punching Power



Problem of Pissoir



Problem of Pissoir



Problem of Pissoir

I Number of minimal erases == minimal match

I Minimal match can be solved for example by minimum flows

I Optimal O(N
√
N) (but worse matching was alowed too)



Treetop Walkway



Treetop Walkway

I The problem is to make graph strongly connected with
minimal number of edge additions

I First, we find the condensation of the input graph

I This is possible to do in O(n + m) time

I The resulting graph is a DAG (directed acyclic graph)



Treetop Walkway

I We have to add at least max {#sources,#sinks} edges

I But is this number of edges always sufficient?

The idea:
I WLOG assume #sources ≤ #sinks

I Repeatedly run DFS from all
sources; after the search finds a
sink, terminate the search, and go
to the next source (keep the
information about visited sources)

I This approach divides
sources/sinks into those that found
a match and those who didn’t



Treetop Walkway

I Observe that for every unmatched
source, there is a path from it to a
matched sink

I Similarly, for every unmatched sink,
there is a path from a matched
source to it



Treetop Walkway
I Now it suffices to do the following:

I Create an oriented cycle by
connecting matched sinks/sources
and unmatched sinks that do not
have a source counterpart

I Connect unmatched sinks with
unmatched sources that haven’t
been connected yet

I Observe that graph is now strongly
connected

I Last question – how to map edges
from condensation nodes to
vertices of the original graph?
Solution – choose any vertex from
the strongly connected component

I Total time: O(n + m)


